Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397051

RESUMO

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency. The standard treatment, enzyme replacement therapy with laronidase, has limited effectiveness in treating neurological symptoms due to poor blood-brain barrier penetration. An alternative is substrate reduction therapy using molecules, such as genistein, which crosses this barrier. This study evaluated the effectiveness of a combination of laronidase and genistein in a mouse model of MPS I. Over 12 weeks, MPS I and wild-type mice received laronidase, genistein, or both. Glycosaminoglycan (GAG) storage in visceral organs and the brain, its excretion in urine, and the serum level of the heparin cofactor II-thrombin (HCII-T) complex, along with behavior, were assessed. The combination therapy resulted in reduced GAG storage in the heart and liver, whereas genistein alone reduced the brain GAG storage. Laronidase and combination therapy decreased liver and spleen weights and significantly reduced GAG excretion in the urine. However, this therapy negated some laronidase benefits in the HCII-T levels. Importantly, the combination therapy improved the behavior of female mice with MPS I. These findings offer valuable insights for future research to optimize MPS I treatments.


Assuntos
Mucopolissacaridose I , Feminino , Camundongos , Animais , Mucopolissacaridose I/tratamento farmacológico , Iduronidase/uso terapêutico , Genisteína/farmacologia , Genisteína/uso terapêutico , Encéfalo , Barreira Hematoencefálica , Glicosaminoglicanos/uso terapêutico , Trombina/uso terapêutico , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos
2.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613977

RESUMO

Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions.


Assuntos
Mucopolissacaridose I , Camundongos , Animais , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/genética , Glicosaminoglicanos/metabolismo , Fibroblastos/metabolismo , Hepatócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...